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• A 13-m long serpentine Traveling Wave Structures for Lossless 
Manipulations (TW SLIM) module was designed for achieving high 
resolution ion mobility separations. 

• Achieved 5-fold greater resolution than commercially available drift 
tube or traveling wave IM-MS platforms. 

• Peak capacity and peak generation rates were estimated to be 246 
and 369 s-1 at the optimum conditions.

• Previously unachievable separation for peptides, sugars and lipids 
were realized.

• Lossless ion transmission for the 13-m TW SLIM 
IMS.

• Robust performance achieved over long periods.

• The maximum resolution for the separation of m/z
622 and 922 of 47 was achieved at 2.75-mm gap 
and 4.00 Torr N2.

• The resolution was shown to be independent of 
guard electrode potential and RF amplitude. 

• Peak capacity and peak generation rate were 
estimated to be 246 and 369 s-1.

• Separations were achieved for a set of challenging 
peptides/lipids/carbohydrates mixtures.

• Unachievable separations for different isomers were 
realized by the 13-m long serpentine TW SLIM IMS.

• Ion Mobility Spectrometry (IMS) is a well established analytical 
method that separates ionic species based on differences in their 
mobilities in a buffer gas.1-2

• One limiting feature of contemporary IMS is its relatively low 
resolution compared to HPLC or CE.

• Conventional IMS instruments commonly have drift tubes of ≲1m 
providing resolving powers of ~50-120.3-7

• While this resolution is sufficient for differentiation of chemical 
classes and determination of cross sections,8 many separations 
require much higher resolution. 
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Fig.1 Characterization of  Parameters

Peak Capacity and Peak Generation Rate

Ion Mobility Separations

Fig.10 Initial examples of separations achieved included: reverse 
peptides; two peptides that differ only by a leucine residue being 
replaced by isoleucine; the cis- and trans-double bond orientations for 
complex glycerophosphoethanolamine (PE) lipid isomers; and 
pentasaccharide ion conformations not distinguishable from the other 
IMS platforms (in addition to revealing new conformer peaks).

Fig.9 Different molecular classes typically separate by different “trend 
lines”, with 2+ peptides arriving first (red), then 1+ carbohydrates (blue), 
1+ peptides (green), and finally the 1+ lipids (pink) arriving last due to 
the distinct backbone structures of each molecule type.

 The peak capacity of the present long path TW SLIM module 
was estimated at about 300 for a TW speed of 148 m/s under 
optimum conditions.

 At a traveling wave speed of 148 m/s, the estimated peak 
generation rate was 483 s-1.

Fig.3 Ion current measurement 
demonstrates the lossless ion 
transmission through the entire 
TW SLIM module.

Fig.1 Schematic diagram of the TW SLIM IMS-MS developed for this work.

Fig.2 Photo of the TW SLIM bottom board showing the electrodes arrangement and 
details of a “U” turn region (inset) showing the RF, traveling wave, and guard 
electrodes.

The guard bias (Fig.7A) and RF amplitude (Fig.7B) have no
degrading effects on resolution.

Fig.6A The maximum m/z 622-922 resolution of ~47 was achieved at 
4.00 Torr, which is about ~5-fold greater than the resolution of a 
conventional drift tube IMS (~10).9
Fig.6B The optimum m/z 622-922 resolution of 47±2 was obtained with 
TW amplitudes between 20 V and 30 V.

Results
Ion Transmission and Robustness

Fig.4 Robust performance of the 13-m TW SLIM IMS module was 
achieved (e.g., with no evidence of performance drift due to 
surface charging). Additionally, the mass spectrum (inset) shows a 
wide m/z range (Fig.5).
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