A multi-omic investigation of the role of APOE genotype in Alzheimer’s disease

Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease affecting 47 million people worldwide. There is no cure as of yet and its cause remains unclear. However, the strongest risk factor for developing AD after age is the apolipoprotein E (APOE) genotype (1). Previous studies showed that among the APOE genotypes (ε2, ε3, and ε4), the ε4 carriers have a greater chance of developing AD, while the ε2 carriers protect (ε2 carriers) against or enhance (ε4 carriers) the risk of developing AD. Thus, the study of multi-omic changes that occur due to different APOE genotypes may provide important insights into the mechanisms that can protect (ε2 carriers) or enhance (ε4 carriers) the risk of developing AD.

Methods

Here we used multi-omic (proteomic, metabolomic and lipidomic) measurements to investigate molecular changes between AD and control patients with different APOE genotypes.

Overview

• Alzheimer’s disease (AD) is the most common neurodegenerative disease.
• The genotypes of apolipoprotein E (APOE) were shown to be different risk factors for AD.
• Here a multi-omic approach was performed to investigate the molecular profiling and the role of APOE genotype in AD.

Cohort Study disease and genotype

• Sampling:
 - Brain tissue samples from the frontal cortex and cerebellum were obtained from 62 postmortem patients, including four different APOE genotypes (ε2/ε3, ε3/ε3, ε3/ε4 and ε4/ε4).

• Sample extraction:
 - MPLEX: Single-Sample Extraction for Integrative Proteomic, Metabolomic, and Lipidomic Analyses

• Multi-Omics Analysis:
 - Integrative Proteomic, Metabolomic, and Lipidomic Analyses were performed and the data processing are ongoing.

Results

Lipidomic profiling for AD and APOE genotype

- Phosphatidylcholine (PC):
 - Control vs AD:
 - ε2/ε3: n=12
 - ε3/ε3: n=12
 - ε3/ε4: n=12
 - ε4/ε4: n=6
 - ε3/ε4 vs control:
 - ε2/ε3: n=12
 - ε3/ε3: n=12
 - ε3/ε4: n=12
 - ε3/ε4 vs ε4/ε4:
 - ε2/ε3: n=12
 - ε3/ε3: n=12
 - ε3/ε4: n=12

- Lysophosphatidylcholine (LPC):
 - Control vs AD:
 - ε2/ε3: n=12
 - ε3/ε3: n=12
 - ε3/ε4: n=12
 - ε4/ε4: n=6
 - ε3/ε4 vs control:
 - ε2/ε3: n=12
 - ε3/ε3: n=12
 - ε3/ε4: n=12
 - ε3/ε4 vs ε4/ε4:
 - ε2/ε3: n=12
 - ε3/ε3: n=12
 - ε3/ε4: n=12

Conclusions

• Multi-omic approaches were applied to understand the role of APOE genotype on AD.
• Different lipidomic profiles were observed in Alzheimer’s disease patients and healthy control.
• Different lipidomic profiles were observed in the cerebellum and frontal cortex of the brain.
• Proteomic and metabolomic profiles are still ongoing.

References

Acknowledgements

This research was supported by grants from the National Institute of Environmental Health Sciences of the NIH (RO1ES022195), National Institute of General Medical Sciences (P41 GM074490), and the Laboratory Directed Research and Development Program at PNNL. The work was performed in the W. W. Riley Environmental Molecular Sciences Laboratory (EMSL), a DOE national scientific user facility at PNNL operated by Battelle under contract DE-AC05-76RL01830.

生涯机会：为了潜在的开放，有意在Integrative Omics Group at PNNL，请访问 http://omics.pnl.gov/careers

 ELECTRONIC ARTICLES

Career Opportunities: For potential openings in Integrative Omics Group at PNNL, please visit http://omics.pnl.gov/careers

CONTACT: Xueyun Zheng, Ph.D.
Department of Chemistry, Texas A&M University
E-mail: xueyunzheng100@gmail.com

www.omics.pnl.gov

Pacific Northwest National Laboratory

Prudently Operated By Battelle Since 1941

Ion Mobility R&D Group