Analysis of Structural Changes with High Resolution Structures for Lossless Ion Manipulations (SLIM) Ion Mobility-Mass Spectrometry

IAN K. WEBB1, LIULIN DENG1, AHMED M. HAMID1, GORDON A. ANDERSON1,2, RANDOLPH V. NORHEIM1, SPENCER A. PROST1, SANDILYA V. B. GARIMELLA1, ERIN S. BAKER1, YEHIA M. IBRAHIM1, RICHARD D. SMITH1

1 Pacific Northwest National Laboratory, Richland, WA
2GAA Custom Engineering, Benton City, WA
Introduction

• Ion mobility allows for the study of gas phase biomolecule shape (collision cross section)

• Limited resolution of mobility analyzers makes characterization of some structural changes elusive

• We introduce a Structures for Lossless Ion Manipulations multi-pass module to increase IMS resolution
IM Separations with SLIM

Structures for Lossless Ion Manipulations
- rf and DC confinement
- Straight, 90° turn, switch, and trap segments
- Effectively lossless design → Long path length IM

Experimental Arrangement

Ion switch:
- Ions either continue on path or are switched to MS

N_2 drift gas
Experimental Arrangement

IM Path Length = 1.25 m + N(14.65 m),
N is the # of passes

42 cm x 68 cm

Switching electrodes alternate between DC only and travelling wave.
4 Passes through SLIM Module

m/z 622 from Agilent Low Concentration Tuning Mix

Intensity (au)

Arrival Time (ms)
• Ion losses due to deleterious ion/molecule reactions

• Ion current measurements show no losses in the first pass
Resolving Power Increases with $\sqrt{\text{Drift Length}}$
Isomers: Sodiated 3,5-Dicaffeoleoyquinic Acid

3,5-diCQA is a plant natural product. CQAs have antioxidant, anti-HIV, and anti-inflammatory activity.

Molecular Weight 516.45 Da

- 3,5-diCQA is a plant natural product
- CQAs have antioxidant, anti-HIV, and anti-inflammatory activity
Isomers: Sodiated 3,5-Dicaffeoylquinic Acid

Molecular Weight 516.45 Da

0 Hours UV Irradiation

3 Hours UV Irradiation

Agilent 6560 IM/qTOF

Arrival time (ms)
Isomers: Sodiated 3,5-Dicaffeoylquinic Acid

Molecular Weight 516.45 Da

0 Hours UV Irradiation

3 Hours UV Irradiation

16 m SLIM

trans/trans

cis/cis

3cis/5trans

3trans/5cis

trans/trans

Arrival Time (ms)
Isomers: Sodiated Oligosaccharides

Cellopentaose

Maltopentaose

Mannopentaose

Molecular Weight 828.72 Da
Isomers: Sodiated Oligosaccharides

Oligosaccharides are baseline resolved

Drift Tube IMS

31m SLIM

31m SLIM, Mixture

Cellopentaose
Maltopentaose
Mannopentaose
Separation of a Phosphopeptide Mixture

Peptide 1: APLpSFRGSLPKSYVK
Peptide 2: APLSFRGpSLPKSYVK
Peptide 3: APLSFRGSLPKpSYVK

Drift Tube IMS

Separation of a Phosphopeptide Mixture

Peptide 1: APLpSFRGSLPKSYVK
Peptide 2: APLSFRGpSLPKSYVK
Peptide 3: APLSFRGSLPKpSYVK
Summary and Future Directions

• Initial evaluation of a multi-pass SLIM Module yielded resolving power over 500 (singly charged) after a 60 meter path length

• Elucidation of structural isomers inseparable by drift tube IMS (1 meter)

• Optimization of materials needed to minimize outgassing

• Short term applications: small molecules and small sample sizes
Acknowledgements

• NIH NIGMS 5P41GM103493-13
• DOE BER Genome Sciences Program Pan-omics Project

<Insert group photo here>