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Some approaches for potentially achieving
very high resolution ion mobility separations

Separation over long path in dense gas/fluid; challenges: large
voltage drop required, difficulty in combining with MS

Separation in very low temperature fluid; challenges: design
complexity, maintaining uniform temperature over useful volume

Extended residence time Differential Mobility separations (e.g.
FAIMS); challenges: large ion losses, slow scan speed

Separation in flowing (or expanding gas); challenges: maintaining
highly stable gas flow, limited separation space and dynamic range

Separation in cyclic path devices; challenge: limited separation
space

Separation over very long path lengths; challenges: space and cost
needed for long path device, large voltage drop required



Structures for Lossless lon Manipulations (SLIM)

One of many SLIM electrode arrangements......

DC to Guard electrodes RF to central ‘rung’ electrodes
for ion confinement for ion repulsion from surfaces

DC guards RF/DC rungs DC guards
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See Wednesday Poster by
Tolmachev et al., WP 485

Central electrode optional DC
steps to e.g. drive ion drift

Guard electrode RF +/- rung electrode Guard electrode

/ {mﬁm \\\\\ Garimella et al., JASMS, 25,
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A traveling wave SLIM IMS variation
Existing data shows IMS performance can approach drift tube
designs, and theory suggests Resolution o« (drift path length)®-
with good separations achievable over significant mobility range*
Attraction: voltages applied independent of drift path length
Question: can a SLIM implementation provide good resolution?
2"d question: can the SLIM implementation be simplified?

3"d question: can the design be made compact?

4th question: ..........

* Shvartsburg and Smith, Anal. Chem., 80, 9689 (2008)



Initial traveling wave IMS SLIM electrode design evaluated
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Elevated DC to 4 of every 8 electrodes in each of 11 rows incremented in single electrode steps

Sequence = 11110000



lon transmission efficiency by trajectory simulations

Board spacing: 5 mm gap
Guard 15V, TW amplitude 30 V and speed 84 m/s
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Experimental arrangement
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Direct measurement of ion current in SLIM IMS module

Board spacing: 5 mm
Guard 15V, TW amplitude 30 V and speed 84 m/s
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Good agreement between experiment and simulation
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Comparison of 30 cm TW SLIM with conventional TW IMS
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A few of the TW sequences examined in SLIM modules

1 2 | 3 | 4 s | 6| 7 | 8

IBOV

10000000

11000000

11100000

11110000

11001100

11111000

11111100



Effect of TW sequence on IMS resolution for

6,5 arrangement with 5 mm board gap
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TW amplitude effect on IMS resolution
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Some other SLIM electrode arrangements explored

#RF,#DC

5,6




IMS performance for a 6,5 electrode arrangement

#RF strips, #rows DC electrodes (6,5)
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Effect of SLIM board gap on R for 6,5 linear path arrangement
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Effect of SLIM board gap on R for 6,5 multi-turn path arrangement
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Resolution for straight vs. multi-turn path arrangements
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Simple electrode arrangement for turning corners

lon trajectories calculated for 3 mm gap, TW amplitude = 30 V, speed = 84 m/s

RF- RF+ 3,2 electrode arrangement
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The long or winding roads towards higher resolution
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Initial evaluation of long path length SLIM IMS-MS

~65% efficiency for ion transmission through long path module

Guard electrode spacing between tracks too narrow; ions jump paths at turns*
under conditions needed for separation

Refined design developed
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Take 3 long path (14 M) SLIM design

TW Electrode dimensions: 0.43 mm width x 0.91 length; 0.13 electrode gaps




Initial results....much optimization to come
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A good separation is often not enough

Fast switching of selected ion packets to different path previously demonstrated
(Webb at al, Anal. Chem., 86, 9169; 2014)

Trapping and accumulation of selected packets from multiple separations
(see Tuesday Poster by Tsung-Chi Chen et al.; TP 074)

Our plan: Capture entire separations in a large array of traps, with intensity
dependent number of accumulation steps for each trap (i.e., AGC) to increase
dynamic range

Goal: Enable ‘read out’ of the entire separation, or any selected fractions, at any
speed, to any MS platform type

Screen shot of ion trajectory simulation; ions of three different mobilities first separated and shown fractionated
into three different traps, stored, and selected (green) for transfer to MS

IMS
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