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Abstract 
 

• Metaproteomics is the analysis of proteins 

from microbial communities. 

• Metaproteomics can often reveal the 

dynamic relationships between microbes 

and their environment.  

• Current algorithms and analysis protocols 

have inherent sensitivity limitations. 

• Our objective is to dramatically improve 

biological insights by improving the 

sensitivity via novel computational 

algorithms. 

Introduction 
 

• Current metaproteomics algorithms limited by speed and sensitivity. 

• Loss of sensitivity can reduce the number of identified peptides by as 

much as 50% (Fig 1) 
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Figure 1. A Geobacter MS/MS dataset 

is searched against multiple protein 

sequence databases. The loss of 

identified peptides is solely attributable 

to the increased database size.  For a 

metagenomics library of 1-10Gb, a 50% 

loss in peptides is predicted. 
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Generating score distribution  

for all possible peak-matches 

from Spectrum S1 
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Conclusions 
 

• AlignGF dramatically improves the 

sensitivity of spectrum alignment 

• Tag filtering provides a >200x speed up in 

SpectralNetwork creation 

• AlignGF dramatically expands the spectral 

network while simultaneously improving 

alignment quality. 

All possible peak-matches 

In
te

n
s
it
y
 

m/z 

2 

3 

1 

In
te

n
s
it
y
 

m/z 

Score: 2 Score: 5 

In
te

n
s
it
y
 

m/z 

In
te

n
s
it
y
 

m/z 

Score: 0 

Score: 3 

In
te

n
s
it
y
 

m/z 

In
te

n
s
it
y
 

m/z 

Score: 3 Score: 6  

In
te

n
s
it
y
 

m/z 

In
te

n
s
it
y
 

m/z 

Score: 1 Score: 4 

In
te

n
s
it
y
 

m/z Score 

F
re

q
u
e
n
c
y
 

1 2 3 5 4 6 0 

Frequency count 

1 1 1 

2 

1 1 1 

Probability Density Function 

Score 

D
e
n
s
it
y
 

1 2 3 5 4 6 0 

0.857 
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θ=0.05 
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0.953 

0.05*0.952 

0.053 

0.052*0.95 

• Current algorithms for 

spectrum alignment 

calculate p-values based 

on bulk statistics, not 

individual spectra. 

• AlignGF calculates rigorous 

p-values (Fig 3), using a 

probability density function 

of all possible scores, 

where matching a peak is 

considered as an 

independent Bernoulli 

event with probability θ. 

• AlignGF validates pairwise 

Spectrum Alignments by 

calculating the probability of 

the peak matches for each 

spectrum (Fig 4). 
 

• A spectral network is a cluster 

of related pairwise spectrum 

alignments. (Fig 2) 

• Identifies similar spectra 

without requiring. 

identifications a priori 

• Creates dense networks of 

related spectra. 

• Peptides from clustered 

spectra share sequence 

similarity. 

Figure 3 – AlignGF. All possible subsets of a peak are 

enumerated and their score tabulated (left side). The 

frequency of achieving a given score is transformed into 

the probability density function. 

Figure 4 – Validating Alignments. After aligning 

spectra, the score of picked peaks is compared against 

the PDF (Figure 3) to access statistical significance. 

Tag Filtering 

Project Goals 
 

• Metagenomic sequencing does not reveal 

active metabolic or signaling processes. 

• Metaproteomics experiments contain proteins 

from many species (10s-1000s).  

• Protein sequences share noticeable similarity 

due to evolution.  

• Spectral networks link spectra of related 

sequences, peptides of the same homolog 

from different organisms.  

• Linking spectra is done through spectrum 

alignment. 

• Aligned spectra allow for the transfer of 

sequence from one spectrum onto an 

adjoining spectrum.  

• Time spent in alignment grows with the number of spectra, O(n2). 

• Tagging identifies spectra likely to share short amino acid 

substrings (Fig 5, 6). 

• Filtering alignment pairs via tagging reduces the number of 

comparisons 200 fold. 

• Tag filtering improves the overall run time >200x. 

• We use the AlignGF approach to validate pairwise alignments in 

spectral networks. 

• Datasets show the performance of Spectral Networks to correctly 

identify spectrum pairs whose peptides are related, e.g. sequences 

with a polymorphism. 

• In addition to increased sensitivity and precision (Fig 7), AlignGF 

also validates alignments to unexplained spectra (novel 

polymorphisms). 

Figure 5 – Sequence tag. 

A tag is a short partial 

interpretation of a spectrum  

Figure 6 – Tag-based filtering. Most ‘alignable’ 

spectra share short sequence tags. 50 tags of length 3 

are generated per spectrum. Spectral pairing requires 

at least one matching tag between two spectra.  

Figure 7 – Performance  comparison . 

Spectral pairing sensitivity and precision 

comparison between AlignGF and old Pvalue 

procedures. This graph plots all alignment 

pairs. Sensitivity is the percent of correct 

pairs recovered.  Precision is the percent of 

total pairs that are correct. 

Table 1 – Performance  comparison .  The sensitivity and precision of several different 

methods for accessing significance of spectral alignments. Distance 0 pairs are those with 

identical peptide sequences.  Distance 1 pairs have one amino acid polymorphism. Prefix/suffix 

pairs are those where one peptide sequence is longer (a substring of the other). 

Old Pvalue AlignGF 

 TRUE pairs  FALSE pairs sensitivity precision sensitivity precision 

distance 0 5,066  63,785  72.5%  98.8%  87.8% 98.3% 

distance 1 2,585    4,528,129   64.4%  88.2%  72.3% 94.2% 

prefix/suffix 
(0.9 overlap) 

2,265  10,591,425 63.9%  80.1%  74.0% 91.2% 

prefix/suffix 
(0.8 overlap) 

1,098  9,965,794    59.7%  66.3%  77.3% 90.7% 
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Figure 2 – Spectral Network. Three spectra 

aligned to each other in a network are shown. The 

peptide sequences of the spectra are 

polymorphisms of each other.  

S
e
n
s
it
iv

it
y
 

40 

100 

90 

80 

70 

60 

50 

Precision 

100 90 80 70 60 50 40 30 

AlignGF 

Old Pvalue 


