Mass spectrometry profiling of pentosan polysulfate sodium (PPS)

Komal Kedia, Xueyuen Zheng, Mowei Zhou, Charles Ansong, Erin S. Baker, John R. Cort
Biological Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland WA

Overview
- Our goal is to develop an approach using MS to profile pentosan polysulfate (PPS) at the molecular level.
- PPS is a semisynthetic heterogeneous sulfated polysaccharide mixture believed to interact with the interior lining of the bladder to alleviate pain associated with interstitial cystitis.
- Compositional profiling of PPS is important to understand mechanism of action as well as pharmacokinetics/pharmacodynamics of this drug.
- Our goal is to develop an approach using mass spectrometry profiling of pentosan polysulfate sodium (PPS) at the molecular level.

Introduction
- PPS is a complex sulfated polysaccharide (mass range of 4000-6000 Da) derived from the US.
- PPS is used to treat interstitial cystitis (IC), a condition of the epithelial lining of the bladder that manifests as bladder or pelvic pain and discomfort. Yet the mechanism of action is not fully understood.
- PPS is a semisynthetic heterogeneous sulfated polysaccharide mixture believed to interact with the interior lining of the bladder to alleviate pain associated with interstitial cystitis.

Methods
- Contents of Elmiron capsule dissolved in 1 ml HPLC grade water
- Soluble PPS separated from insoluble excipients by centrifugation and filtration
- PPS spiked at different concentrations in HPLC water and spiked solutions treated with Dowex ion exchange resin to convert sodiated esters of sulfate to protonated form
- Pentylamine with hexafluoroisopropanol (HFIP) added as an ion-pairing reagent
- Treated PPS solution loaded on conditioned C18 SPE cartridge
- Elution performed using a linear acetonitrile gradient
- Individual fractions injected in FTICR and IMS-MS

Results
- Characterization of PPS with ion pearing reagents
 - In MS1 spectra obtained from FTICR for PPS spiked water, a mass difference of 185.06 Da was observed between most abundant peaks. This difference corresponds to -SO3NH3(CH2)4CH3 + 18.01 Da (Figure 2)
 - In our opinion this mass difference arises from different degree of sulfation and not due to loss of sulfate as a result of in-source fragmentation
 - Collision induced dissociation (CID) on PPS associated peaks showed abundant product ions resulting from a neutral loss of SO3NH3(CH2)4CH3 (187.06 Da) and xylose (132.04 Da) (Figure 3)
 - The IM-MS profiles for a PPS sample shows different trend lines for different charge states (+1, +2, +3, +4, +5), which provides additional dimension of separation of species that cannot be resolved by m/z alone.
 - The treatments of ion exchange resin and ion-pair reagent to PPS sample enhanced the signal (Figure 5 and 6).

Conclusions
- We used ion-pair reverse phase chromatography to enable future separations of PPS from complex matrices.
- Presence of alkylammonium counterions improves ionization efficiency, reduces complexity from multiple sodium adducts and reduces loss of sulfate group by in-source fragmentation.
- Using IM-MS we were able to investigate high charge state species as well, coming from high molecular weight components of PPS.
- Addition of alkylammonium counterions enhanced the signal in 2D IM-MS performed in positive mode.

Acknowledgements
- Disclaimer: This article reflects the views of the authors and should not be construed to represent FDA’s views or policies.

References
3. 76RL01830. Operated by Battelle for the DOE under contract DE-AC05-

Career Opportunities: http://omics.pnl.gov/careers

CONTACT: John Cort, Ph.D.
Biological Sciences Division
Pacific Northwest National Laboratory
E-mail: John.Cort@pnnl.gov