Proteome-wide Light/Dark Modulation of Protein Thiol Oxidation in Cyanobacteria Revealed by Quantitative
Site-Specific Redox Proteomics
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Introduction

* Reversible protein thiol oxidation Is an
essential regulatory mechanism of signal
transduction, metabolism, and gene
expression.

* In photosynthetic organisms, reversible
thiol oxidation modulates the activation
or inactivation of many enzymes of
photosynthetic electron transport linked
to photosystems | and Il in light/dark
cycles.

* [t Is still largely unknown how broadly
the redox process is involved beyond
photosynthesis and what are the specific
cysteine (Cys) sites serving as redox
switches in photosynthetic organisms.

* We have Investigated the extent of
protein thiol oxidation under light, dark
and DCMU (a photosystem Il inhibitor) In
cyanobacteria by a quantitative site-
specific redox proteomic approach.

* Broad redox dynamic changes on
iIndividual cysteine residues in response
to physiological perturbations were
guantified.

* The functional significance of redox-
sensitive Cys-sites In proteins (e.g.,
glucose 6-phosphate dehydrogenase,
NAD(P)-dependent glyceraldehyde-3-
phosphate dehydrogenase, and
peroxiredoxin Sll1621) was further
confirmed by site-mutagenesis and
biochemical studies.

Methods
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Figure 1. Workflow for the enrichment and site-specific quantification of
thiol oxidation.

« Synechocystis were cultured under continuous light,
dark, or DCMU for 2 h. Cells were lysed and free thiols
were blocked with N-Ethylmaleimide (NEM). The
reversible oxidized Cys were reduced by dithiothreitol
(DTT). Enrichment of Cys-proteins was carried out by
using Thiopropyl Sepharose 6B resin, followed by on-
bead tryptic digestion and TMT labeling.

« Samples were analyzed by a Waters nanoAquity
UPLC system. The system was operated with a
gradient starting from 100% of mobile phase A (0.1%
(v/v) formic acid in water) to 60% (v/v) of mobile phase
B (0.1% (v/v) formic acid in acetonitrile) over 3 h. MS
analysis was performed on a Thermo Scientific LTQ-
Orbitrap Velos mass spectrometer (Thermo Scientific,
San Jose, CA).

« LC-MS results were then analyzed using the program
MSGF+. Biological function analysis of the identified
proteins was based on gene ontology and KEGG
pathway analyses.

Redox-sensitive proteins in important
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Figure 6. Redox-sensitive proteins involved in photosynthesis, carbon fixation, glycolysis

Figure 2. (a) Experimental workflow to study cyanobacteria oxidation. (b) Heatmap of the relative and TCA cycle. The redox-sensitive protein are labeled in red.

levels of Cys oxidation under light, dark or DCMU conditions.

Site-specific redox sensitivity predicts
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Figure 3. Stoichiometry of Cys oxidation. (a) The redox sensitivity of individual Cys-sites. (b) E o) = 1 2
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Figure 7. Functional cysteine sites. (a) Relative oxidation levels individual Cys-sites of
glyceraldehyde 3-phosphate dehydrogenase (Gap2). (b) Structure of Gap2. (c) Gap2
activities. (d) Redox regulation of Gap2 activities. (e) Relative oxidation levels of individual
Cys-sites of PetH. (f) Structure of ferredoxin NADP™* reductase (PetH).
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Figure 4. Top significant biological functions and pathways based on gene ontology and KEGG
pathway analysis.
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Figure 5. Cys oxidation levels of selected proteins involved in photosynthesis, carbon flxatlon and
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glycolysis.

Conclusions

* Proteome-wide coverage of redox
changes on ~2,100 Cys-residues was
achieved, which significantly expanded
the current repertoire of thiol-based redox
modifications under physiological
conditions.

* The redox sensitivity data for individual
Cys-residues provides important
predictive information for identifying
functional sites of given proteins as
supported by functional validation.

* The stoichiometry information for
iIndividual Cys-sites provided additional
evidence of functional relevance.
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